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1. Introduction 
In the summer of 1947, when I began to work on the simplex method 
for solving linear programs, the first idea that occurred to me is one 
that would occur to any trained mathematician, namely the idea of 
step-by-step descent (with respect to the objective function) along 
edges of the convex polyhedral set from one vertex to an adjacent 
one. I rejected this algorithm outright on intuitive grounds-it had to 
be inefficient because it proposed to solve the problem by wandering 
along some path of outside edges until the optimal vertex was reached. 
I therefore began to look for other methods that gave more promise of 
being efficient, such as those that went directly through the interior 
[4]. 

Today we know that before 1947, four isolated papers had been 
published on special cases of the linear programming problem: papers 
by Fourier (1824) [10], de la Vallee Poussin (1911) [9], Kantorovich 
(1939) [13], and Hitchcock (1941) [11]. All except Kantorovich's paper 
proposed, as a solution method, descent along the outside edges of 
the polyhedral set, which is the way we describe the simplex method 
today. There is no evidence that these papers had any influence on 
each other. Evidently they sparked zero interest on the part of other 
mathematicians and were unknown to me when I first proposed the 
simplex method. As we shall see, the simplex algorithm evolved from 
a very different geometry, one in which it appeared to be very efficient. 

The linear programming problem is to find 

minz, x 2:: a such that Ax = b, ex = z(min) 

where x = (Xl, ... ,xn ), A is an m by n matrix, and band e are column 
and row vectors. 

Curiously, up to 1947 when I first proposed that a model based on 
linear inequalities be used for planning activities of large-scale enter
prises, linear inequality theory had produced only 40 or so papers, 
in contrast to linear equation theory and the related subjects of linear 
algebra and approximation, which had produced a vast literature [16]. 
Perhaps this disproportionate interest in linear equation theory was 
motivated more than mathematicians care to admit by its practical use 
as an important tool in engineering and physics, and by the belief that 
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linear inequality systems would not be practical to solve unless they 
had three or fewer variables [10]. 

My proposal served as a kind of trigger-ideas that had been 
brewing all through World War II but had never found expression 
burst forth like an explosion. Almost two years to the day after I 
first proposed that linear programming (LP) be used for planning, 
Koopmans organized the 1949 conference (now referred to as The 
Zero-th Symposium on Mathematical Programming) at the University of 
Chicago. There mathematicians, economists, and statisticians pre
sented their research and produced a remarkable proceedings [15]. 
LP soon became part of the newly developing professional fields of 
Operations Research and Management Science. Today thousands of 
linear programs are solved daily throughout the world to schedule 
industry. These involve many hundreds, thousands, and sometimes 
tens of thousands of equations and variables. Some mathematicians 
rank LP as "the newest yet most potent of mathematical tools" [1]. 

John von Neumann, Tjalling Koopmans, Albert Tucker, and oth-
. ers well known today, some just starting their careers back in the late 

1940s, played important roles in LP's early development. A group of 
young economists associated with Koopmans (R. Dorfman, K. Arrow, 
P. Samuelson, H. Simon, and others) became active contributors to the 
field. Their research on LP had a profound effect on economic theory 
and led to Nobel Prizes. Another group led by Tucker, notably includ
ing D.Gale and H. Kuhn, began the development of the mathematical 
theory. 

This outpouring between the years of 1947 and 1950 coincided 
with the first building of digital computers. The computer became 
the tool that made the application of linear programming possible. 
Everywhere we looked, we found practical applications that no one 
earlier could have posed seriously as optimization problems because 
solving them by hand computation would have been out of the 
question. By good luck, clever algorithms in conjunction with com
puter development gave early promise that linear programming would 
become a practical science. The intense interest by the Defense Depart
ment in the linear programming application also had an important 
impact on the early construction of computers [5]. The U.S. National 
Bureau of Standards, with Pentagon funding, became a focal point 
for computer development under Sam Alexander; its Mathematics 
Group under John Curtis began the first experiments on techniques 
for solving linear programs, primarily by Alan Hoffman, Theodore 
Motzkin, and others [12]. 

Since we could see possible applications of linear programs every
where we looked, it seemed only natural to suppose that there was 
an extensive literature on the subject. To my surprise, I found in my 
search of the contemporary literature of 1947 only a few references on 
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linear inequality systems and none on solving an optimization problem 
subject to linear inequality constraints. 

T. S. Motzkin, in his definitive 1936 Ph.D. thesis on linear inequal
ities [16], makes no mention of optimizing a function subject to a 
system of linear inequalities. However, 15 years later at the First Sym
posium on Linear Programming (June 1951), Motzkin declared: "There 
have been numerous rediscoveries [of LP] partly because of the confus
ingly many different geometric interpretations which these problems 
admit." He went on to say that different geometric interpretations 
allow one "to better understand and sometimes to better solve cases 
of these problems as they appeared and developed from a first occur
rence in Newton's Methodus Fluxionim to right now." 

The "numerous rediscoveries" that Motzkin referred to were prob
ably the two or three papers we have already cited concerned with 
finding the least sum of absolute deviations, minimizing the maximum 
deviation of linear systems, or determining whether a solution to a 
system of linear inequalities exists. Fourier pointed out as early as 
1824 that these were all equivalent problems [10]. Linear programs, 
however, had also appeared in other guises. In 1928, von Neumann 
[20] formulated the zero-sum matrix game and proved the mini-max 
theorem, a forerunner of the duality theorem of linear programming 
(for which he is also due credit) [3]. In 1936, Neyman and Pearson 
considered the problem of finding an optimal critical region for testing 
a statistical hypothesis. Their Neyman-Pearson Lemma is a statement 
about the Lagrange Multipliers associated with an optimal solution to 
a linear program [18]. 

After I had searched the contemporary literature of 1947 and 
found nothing, I made a special trip to Chicago in June 1947 to visit 
T. J. Koopmans to see what economists knew about the problem. As 
a result of that meeting, Leonid Hurwicz, a young colleague of Koop
mans, visited me in the Pentagon in the summer and collaborated 
with me on my early work on the simplex algorithm, a method which 
we described at the time as "climbing up the bean pole": We were 
maximizing the objective. 

Later I made another special trip, this one to Princeton in the 
fall of 1947, to visit the great mathematician Johnny von Neumann to 
learn what mathematicians knew about the subject. This was after I 
had proposed the simplex method, but before I realized how efficient 
it was going to be [4]. 

The origins of the simplex method go back to one of two famous 
unsolved problems in mathematical statistics proposed by Jerzy Ney
man, which I mistakenly solved as a homework problem; it later 
became part of my Ph.D. thesis at Berkeley [8]. Today we would 
describe this problem as proving the existence of optimal Lagrange 
multipliers for a semi-infinite linear program with bounded variables. 
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Given a sample space n whose sample points u have a known prob
ability distribution dP(u) in n, the problem I considered was to prove 
the existence of a critical region win n that satisfied the conditions of 
the Neyman-Pearson Lemma. More precisely, the problem concerned 
finding a region win n that minimized the Lebesgue-Stieltjes integral 
defined by (3) below, subject to (1) and (2): 

Jw dP(u) = a (1) 

a-I Jwf(U)dP(U) = b (2) 

a-I Jwg(u)c;lP(U) = z(min) (3) 

where 0 < a < 1 is the specified "size" of the region; f(u) is a given 
vector function of u with m - 1 components whose expected value z 
over w is specified by the vector b; and g(u) is a given scalar function 
of u whose unknown expected value z over w is to be minimized. 

Instead of finding a critical region, we can try to find the char
acteristic function cp(u) with the property that cp(u) = 1 if u E w 

and cp(u) = 0 if u fE. w. The original problem can then be restated as: 

Find minz and a function cp(u) for u E n such that: 

J 
cp(u)dP(u) = a 

uEfi 
o :::; cp(u) :::; 1 

a-I J f(u)cp(u)dP(u) = b 
uEfi 

a-I J g(u)cp(u)dP(u) = z(min) 
uEfi 

A discrete analog of this semi-infinite linear program can be 
obtained by selecting n representative sample points u 1, ... , uj , ••• , 

Un in n and replacing dP(uj ) by discrete point probabilities ~j > 0, 
where n may be finite or infinite. Setting 

Xj = (~/a) . cp(uj ) 0 :::; Xj :::; ~/a 

the approximation problem becomes the bounded variable LP: 

Find minz, 0 :::; Xj :::; ~j/ar 

(4) 
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FIGURE 1. 
The m-dimensional 
simplex. 
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where f(u j ) = A.j are m -1 component column vectors, and g(uj ) = Cj. 

Since n, the number of discrete j, could be infinite, I found it 
more convenient to analyze the LP problem in the geometry of the 
finite (m + 1) dimensional space associated with the coefficients in a 
column. I did so initially with the convexity constraint (4) but with 
no explicit upper bound on the non-negative variables Xj [2,3,15]. The 
first coefficient in a column (the one corresponding to (4» is always I, 
so my analysis omitted the initial 1 coordinate. Each column (A.j' Cj) 

becomes a point (y, z) in Rm where y = (Yl, ... ,Ym-l) has m - 1 
coordinates. 

The problem can now be interpreted geometrically as one of 
assigning weights x j 2:: 0 to the n points (yj, zj) = (A.j' Cj) in R m so 
that the "center of gravity" of these points (see Figure 1) lies on the 
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vertical "requirement" line (b, z) and such that its z coordinate is as 
small as possible. 

2. Simplex Algorithm 
Step t of the algorithm begins with an (m - I)-simplex, as shown in 
Figure I, defined by some m points (A. ji , Cj) for i = (I, ... ,m) and 
m weights X7i > a (in the nondegenerate case), such that I A·ji , Xji = 
b. In the figure, the vertices of the m - 1 = 2 dimensional simplex 
correspond to h = I, j 2 = 2, j 3 = 3. The line (b, z) intersects the plane 
of the simplex (the triangle in the figure) in an interior point (b, Zt). 
A point (A.s, cs) is then determined whose vertical distance below this 
"solution" plane of the simplex is maximal. 

Algebraically, the equation z = 'TT'y + 'TT'o of the plane associated 
with the simplex is found by solving the system of m equations 'TT' A.j i + 
'TT'o = Cji' j i = (h, ... ,j m). Next, let j = s be the index of (A. s, cs), the 
point most below this plane, namely 

s = arg ~in[cj - ('TT' A.j + 'TT'o)] 
J 

If [cs - ('TT' A.s + 'TT'o)] turns out to be non-negative, the iterative 
process stops. Otherwise, the m-simplex, the tetrahedron in Figure I, 
is formed as the convex combination of the point (A.s, cs) and points 
lying in the (m - I)-simplex. The requirement line (b, z) intersects 
this m-simplex in a segment (b, Zt+1), (b, Zt) where Zt+1 < Zt. The 
face containing (b, Zt+1) is then selected as the new (m - I)-simplex. 
Operationally the point (A.s, cs) replaces (A'jr' Cjr) for some r. The 
index r is not difficult to determine algebraically. 

Geometrical insight as to why the simplex method is efficient can 
be gained by viewing the algorithm in two dimensions (see Figure 
2). Suppose a piecewise linear function Z = f(y) is defined as the 
underbelly of the convex hull of the points (yj, zj) = (A.·, Cj ). We wish 
to determine z = f(b) and to find two points (yj, zj), (yk, zk) and weights 
(A, JL) 2: a on these two points such that Ayj + JLyk = b, A + JL = I, 
Azj + JLZk = f(b). In this two-dimensional case, the simplex method 
resembles a kind of secant method in which, given any slope 0', it 
is cheap to find a point (yS, ZS) of the underbelly such that the slope 
(actually the slope of a support) at yS is 0', but in which it is not 
possible, given b, to find easily the two points (yt, zt) and (yk, zk) and 
corresponding weights (A, JL) for determining z = f(b). 

In Figure 2, the algorithm is initiated (in phase II of the simplex 
method) by two points, say (y1, Zl) and (y6, z6), on opposite sides of 
the requirement line. The slope of the "solution" line joining them 
is 0'1. Next, one determines that the point (y5, Z5) is the one most 
below the line joining (y1, Zl) to (y6, Z6) with slope 0'1. This is done 

I ~ 



FIGURE 2. 
The underbelly of 
the convex hull, 
z = f(y). 
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z X (y2, z2) x (y1 z4) 
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algebraically by simply substituting the coordinates (yj, zj) into the 
equation of the solution line z - z6 = a1 (y - y6) and finding the point 
j = s such that a1(yj - y6) - (zj - z6) is maximal. For the preceding 
example, s = 5 and thus (y5, Z5) replaces (y6, Z6). The steps are then 
repeated with (yl, Zl) and (y5, Z5). The algorithm finds the optimum 
point (b, z*) in two iterations with the pair (y3, Z3), (y5, Z5). 

In practical applications, one would expect that most of the points 
(A. j , Cj) would lie above the underbelly of their convex hull. We would 
therefore expect that very few j would be extreme points of the 
underbelly. Because the algorithm only chooses (A. s , cs ) from among 
the latter, and because these typically would be rare, I conjectured 
that the algorithm would have very few choices and would take about 
m steps in practice. 

It is not difficult, of course, to construct cases that take more 
than m iterations, so let me make some remarks about the rate of 
convergence of Zt to Z *, the minimum value of z, in the event that the 
method takes more than m iterations. 

3. Convergence Rate of .the Simplex Method 
Assume there exists a constant 1 ~ 7J > 0 such that for every iteration 
T, the values of all basic variables x Ti satisfy 

1 ~ XTi 2: 7J > 0 for allji 
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At the start of iteration t, by eliminating the basic variables from the 
objective equation, we obtain 

L 
Zt-1 - Z = (-ej)xj 

where eji = 0 for all basic j = j i. If (-e~) = max( -ej) ::; 0, the iter
ative process stops with the current basic feasible solution optimal. 
Otherwise, we increase nonbasic Xs to Xs = ()t ~ (j and adjust basic 
variables to obtain the basic feasible solution to start iteration t + 1. 

Let z * = min z and x j = x j ~ 0 be the corresponding optimal x j • 
We define d t as Zt - z*. 

Theorem 1. Independent of the number of variables n, 

(dtldo)::; (1 - ()1)(1 - ()2) ... (1 - ()t)::; e-~(J1"::; e-o· t 

where ()t ~ (j > 0 is the value of the incoming basic variable Xs on iteration 
t. 

Proof. '\' '\' 

( -t) * (--cst)"-' * (-t) -Cj Xj ::; Xj = -Cs 

d t-1 - dt = Zt-1 - Zt (-e~)xs = (-e~)()t ~ d t-1 . ()t 

where the inequality between the last two terms is obtained by apply
ing the preceding inequality. Rearranging terms and applying t itera
tively for t = 2,3, ... 

dt::; (1- ()t)d t-1 < e-(Jtdt_1 ::; e-Odt-1 

::; e-o(e-Od t_2)'" ::; e-(J·t d1 

Corollary 2. Assuming () T has 1/ on the average" the same average value 
as any other xii' namely (lfm), then the expected number of iterations t 
required to affect an e-k-fold decrease in do will be less than km iterations, 
that is, 

(dtldo) < e-~(J1" == e- tl111 

Thus, under the assumption that the value of the incoming vari
able is lfm on the average, a thousand-fold decrease in d t = Zt - Z * 

could be expected to be obtained in less than 7m iterations because 
e-7 < .001. 

It was considerations such as these back in 1947 that led me to 
believe that the simplex method would be very efficient. 

It is fortunate that when the simplex algorithm for solving linear 
programs was first being developed back in 1947, the column geome
try, and not the row geometry, was used. As we have seen, the col
umn geometry suggested a different algorithm, one that promised to 
be very efficient. Accordingly, I developed a variant of the algorithm 
without the convexity constraint (4) and arranged in the fall of 1947 
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to have the Bureau of Standards test it on George Stiegler's nutrition 
problem [19]. Of course, I soon observed that what appeared in the 
column geometry to be a new algorithm was, in the row geometry, 
the vertex descending algorithm that I had rejected earlier. 

It is my opinion that any well-trained mathematician viewing the 
linear programming problem in the row geometry of the variables 
would have immediately come up with the idea of solving it by a 
vertex descending algorithm, as did Fourier, de la Vallee Poussin, and 
Hitchcock before me-each of us proposing it independently of the 

. other. I believe, however, that if anyone had to consider it as a prac
tical method, as I had to, he or she would have quickly rejected it on 
intuitive grounds as a stupid idea without merit. My own contribu
tions towards the discovery of the simplex method were (1) indepen
dently proposing the algorithm, (2) initiating the development of the 
software necessary for its practical use, and (3) observing (by viewing 
the problem in the geometry of the columns rather than the rows) that 
contrary to geometric intuition, following a path on the outside of the 
convex polyhedron might be an efficient procedure. 

4. The Role of Sparsity in the Simplex Method 
To determine s = arg minj[cj - (1TA' j + 1To)] requires forming the 
scalar product of two vectors 1T and A.j for each j . This "pricing out" 
operation, as it is called, is usually cheap because the vectors A. j are 
sparse; that is, they typically have few nonzero coefficients (perhaps, 
on the average, four or five nonzeros). Nevertheless, if the number of 
columns n is large, say several thousand, pricing can use up a lot of 
time. (Parallel processors could be used very effectively for pricing by 
assigning subsets of the columns to different processors [6].) 

In single processors, various partial pricing schemes are used. 
One scheme, used in the MINOS software system, is to partition 
the columns into subsets of some k columns each [17]. The choice 
of s is restricted to columns that price out negative among the first 
k until there are none, and then moving on to the next k, and so 
forth. Another scheme used is to price out all the columns and rank 
them according to how negative they price out. A subset of j, say the 
50 most negative in rank, are then used to iteratively select s until 
this subset no longer has a column that prices out negative. A new 
subset is then generated for selecting s, and the process is repeated. 
Partial pricing schemes are very effective when n is large, especially 
for matrix structures that contain so-called "GUB" (Generalized Upper 
Bound) rows [7]. 

Besides the pricing-out of the columns, the simplex method 
requires that the current basis B, that is, the columns (j., ... ,j m) used 
to form the simplex in Figure I, be maintained from iteration t to t + 1 
in a form that makes it easy to compute two vectors v and 1T, where 
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Bv = A.s and 1TB = (ch' ... ,Cjm)' The matrix B is typically sparse. 
In problems where the number of rows m is greater than 1000, the 
percent of nonzeros may be less than 1/2 of 1 percent. Even for such B, 
it is not practical to maintain B-1 explicitly, because it could turn out to 
be 100 percent dense. Instead, B is often represented as the product of 
a lower and upper triangular matrix in which each is maintained as a 
product of elementary matrices, with every effort being made to keep 
the nonunit column of each elementary matrix as sparse as possible. 
Maintaining this sparsity is important, because otherwise, for the case 
of m = 1000 the algorithm would have to manipulate data sets with 
millions of nonzero numbers. Solving systems Bv = A.s in order to 
determine which variable leaves the basis would become too costly. 

5. The Role of Near-Triangularity of the Basis. 
The· success of the simplex method in solving very large problems 
encountered in practice depends on two properties found in almost 
every practical problem. First, the basis is usually sparse. Second, 
one can usually rearrange the rows and columns of the various bases 
encountered in the course of solution so that they are nearly triangular. 
Near-triangularity makes it relatively inexpensive to represent it as a 
product of a lower and upper triangular matrix and to preserve much 
of the original sparsity. 

Even if the bases were sparse but not nearly triangular, solving 
systems Bv = A.s could be too costly to perform. 

The success of solving linear programming therefore depends on 
a number of factors: (1) the power of computers, (2) extremely clever 
algorithms, and most of all (3) a lot of good luck that the matrices of 
practical problems will be sparse and that their bases, after rearrange
ment, will be nearly triangular. 

For over 40 years the simplex method has reigned supreme as 
the preferred method for solving linear programs. Its efficiency is 
the historical reason for the practical success of the field. As of this 
writing, however, the algorithm is being challenged by new interior 
methods proposed by N. Karmarkar [14] and others and by methods 
that exploit special structure. If these new methods turn out to be 
more successful than the simplex method for solving practical linear 
programs, it will be not because of any theoretical reasons having to do 
with polynomial time for solving worst-case general linear programs, 
but because they can more effectively exploit the sparsity and near 
triangularity of practical problems than the simplex method is able to 
do. 
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