

Kruskal's Algorithm for Minimal Spanning Tree

Given a simple, undirected, connected, weighted graph $G=(V, E, w)$, where V is the vertex set, E is the edge set, and $w: E \longrightarrow \mathbb{R}$ is the weight function which assigns a positive weight to each of the edges, the following is a proof that Kruskal's algorithm produces a minimal spanning tree (MST).

Theorem. Any spanning tree T for G constructed by Kruskal's algorithm is a minimal spanning tree.
Proof. The proof is by contradiction.
Let T be a subgraph of G constructed by Kruskal's algorithm, since the algorithm constructs a subgraph T with n vertices and m edges such that T has no cycles, and $m=n-1$, then T is a spanning tree for G.

Suppose that the edges in T are $\left\{e_{1}, e_{2}, \ldots, e_{n-1}\right\}$, and the algorithm places the edges in the tree T in that order, so that

$$
w\left(e_{1}\right) \leq w\left(e_{2}\right) \leq \cdots \leq w\left(e_{n-1}\right)
$$

Suppose also that T is not a minimal spanning tree for G.
Among all the minimal spanning trees for G, choose one, say H, which has a maximum number of edges in common with T. The trees H and T are not identical, so T has at least one edge that does not belong to H.
Let e_{k}, where $1 \leq k \leq n-1$, be the first edge of T that is not in H, and define $G_{0}=H+e_{k}$.
Then G_{0} has exactly one cycle, since if G_{0} contained two cycles C_{1} and C_{2}, then we could remove an edge from one of the cycles to get a connected graph G_{0}^{\prime} which contains a cycle such that $\left|V\left(G_{0}^{\prime}\right)\right|=n$ and $\left|E\left(G_{0}^{\prime}\right)\right|=n-1$, but this implies that G_{0}^{\prime} is a tree, which is a contradiction. Thus, G_{0} contains exactly one cycle C.
Since T has no cycles, there is an edge e_{0} of C that is not in T. The graph $T_{0}=G_{0}-e_{0}$ is also a spanning tree for G. To see this, note that the graph $T_{0}=G_{0}-e_{0}$ is connected, since G_{0} is connected and the edge e_{0} is removed from the cycle. Also, $\left|V\left(T_{0}\right)\right|=n$ and $\left|E\left(T_{0}\right)\right|=\left|E\left(G_{0}\right)\right|-1=n-1$, and therefore T_{0} is connected and satisfies the tree formula: $\left|V\left(T_{0}\right)\right|=\left|E\left(T_{0}\right)\right|+1$, thus, T_{0} is a tree. It is a spanning tree for G since it contains the same vertices as G_{0}, which are the same vertices as those of H, which are the same as those of G. Also,

$$
w\left(T_{0}\right)=w(H)+w\left(e_{k}\right)-w\left(e_{0}\right)
$$

Now, since H is a minimal spanning tree for G, then $w(H) \leq w\left(T_{0}\right)$, and it follows that

$$
w\left(e_{0}\right) \leq w\left(e_{k}\right)
$$

By Kruskal's algorithm, e_{k} is an edge of minimum weight such that the subgraph consisting of the edges $\left\{e_{1}, \ldots, e_{k-1}\right\} \cup\left\{e_{k}\right\}$ is acyclic. But the subgraph consisting of the edges $\left\{e_{1}, \ldots, e_{k-1}\right\} \cup\left\{e_{0}\right\}$ is a subgraph of the minimal spanning tree H, and is therefore acyclic, and since Kruskal's algorithm added e_{k} instead of e_{0}, then

$$
w\left(e_{k}\right) \leq w\left(e_{0}\right)
$$

and so

$$
w\left(e_{k}\right)=w\left(e_{0}\right)
$$

Thus, $w\left(T_{0}\right)=w(H)$, and T_{0} is also a minimal spanning tree for G.
However, T_{0} has more edges in common with T than H has in common with T, which contradictions our original assumption. Therefore, the spanning tree constructed by Kruskal's algorithm is a minimal spanning tree.

