

Kruskal's Algorithm for Minimal Spanning Tree

Given a simple, undirected, connected, weighted graph G = (V, E, w), where V is the vertex set, E is the edge set, and $w : E \longrightarrow \mathbb{R}$ is the weight function which assigns a positive weight to each of the edges, the following is a proof that Kruskal's algorithm produces a minimal spanning tree (MST).

Theorem. Any spanning tree T for G constructed by Kruskal's algorithm is a minimal spanning tree.

Proof. The proof is by contradiction.

Let T be a subgraph of G constructed by Kruskal's algorithm, since the algorithm constructs a subgraph T with n vertices and m edges such that T has no cycles, and m = n - 1, then T is a spanning tree for G.

Suppose that the edges in T are $\{e_1, e_2, \ldots, e_{n-1}\}$, and the algorithm places the edges in the tree T in that order, so that

$$w(e_1) \le w(e_2) \le \dots \le w(e_{n-1}).$$

Suppose also that T is **not** a minimal spanning tree for G.

Among all the minimal spanning trees for G, choose one, say H, which has a maximum number of edges in common with T. The trees H and T are not identical, so T has at least one edge that does not belong to H.

Let e_k , where $1 \le k \le n-1$, be the first edge of T that is not in H, and define $G_0 = H + e_k$.

Then G_0 has exactly one cycle, since if G_0 contained two cycles C_1 and C_2 , then we could remove an edge from one of the cycles to get a connected graph G'_0 which contains a cycle such that $|V(G'_0)| = n$ and $|E(G'_0)| = n - 1$, but this implies that G'_0 is a tree, which is a contradiction. Thus, G_0 contains exactly one cycle C.

Since T has no cycles, there is an edge e_0 of C that is not in T. The graph $T_0 = G_0 - e_0$ is also a spanning tree for G. To see this, note that the graph $T_0 = G_0 - e_0$ is connected, since G_0 is connected and the edge e_0 is removed from the cycle. Also, $|V(T_0)| = n$ and $|E(T_0)| = |E(G_0)| - 1 = n - 1$, and therefore T_0 is connected and satisfies the tree formula: $|V(T_0)| = |E(T_0)| + 1$, thus, T_0 is a tree. It is a spanning tree for G since it contains the same vertices as G_0 , which are the same vertices as those of H, which are the same as those of G. Also,

$$w(T_0) = w(H) + w(e_k) - w(e_0).$$

Now, since H is a minimal spanning tree for G, then $w(H) \leq w(T_0)$, and it follows that

$$w(e_0) \le w(e_k).$$

By Kruskal's algorithm, e_k is an edge of minimum weight such that the subgraph consisting of the edges $\{e_1, \ldots, e_{k-1}\} \cup \{e_k\}$ is acyclic. But the subgraph consisting of the edges $\{e_1, \ldots, e_{k-1}\} \cup \{e_0\}$ is a subgraph of the minimal spanning tree H, and is therefore acyclic, and since Kruskal's algorithm added e_k instead of e_0 , then

$$w(e_k) \le w(e_0)$$

and so

 $w(e_k) = w(e_0).$

Thus, $w(T_0) = w(H)$, and T_0 is also a minimal spanning tree for G.

However, T_0 has more edges in common with T than H has in common with T, which contradictions our original assumption. Therefore, the spanning tree constructed by Kruskal's algorithm is a minimal spanning tree.